Operations on Real Numbers

๐Ÿ‘‹ Hello Students!

Ab tak humne numbers ko pehchanna seekha. Ab hum unke saath khelna seekhenge! ๐ŸŽฎ

Is chapter mein hum Real Numbers par Addition (+), Subtraction (-), Multiplication (ร—), aur Division (รท) karna seekhenge. Ye bilkul algebra jaisa hai, bas yahan x aur y ki jagah โˆš2 aur โˆš3 hote hain.

๐ŸŽฅ Video Explanation

English Explanation

Hindi Explanation

๐Ÿ“Š Infographic Summary

Infographic Summary

โš–๏ธ The Golden Rules (Rational vs Irrational)

๐Ÿ“– Story Time: Oil and Water

Rational numbers (paani) aur Irrational numbers (tel) kabhi poori tarah mix nahi hote. Agar tum unhe add ya subtract karoge, toh result hamesha 'oily' (Irrational) hi rahega. Lekin agar do Irrational numbers (tel aur tel) milte hain, toh kabhi-kabhi magic hota hai aur woh Rational ban jaate hain!

Jab ek Rational number ek Irrational number se milta hai, toh kya hota hai? Yaad rakhein:

  • Rational + Irrational = Irrational (e.g., 2 + โˆš3 is Irrational)
  • Rational - Irrational = Irrational (e.g., 2 - โˆš3 is Irrational)
  • Rational ร— Irrational = Irrational (e.g., 2โˆš3 is Irrational, agar rational number 0 nahi hai)
  • Rational รท Irrational = Irrational (e.g., 2/โˆš3 is Irrational)

Exception: Agar hum do Irrational numbers ko add, subtract, multiply ya divide karein, toh result Rational bhi ho sakta hai aur Irrational bhi.

Examples:
  • โˆš2 + โˆš2 = 2โˆš2 (Irrational)
  • โˆš2 - โˆš2 = 0 (Rational!) ๐Ÿ˜ฒ
  • โˆš3 ร— โˆš3 = โˆš9 = 3 (Rational!) ๐Ÿ˜ฒ
  • โˆš2 ร— โˆš3 = โˆš6 (Irrational)

โž•โž– Addition & Subtraction of Square Roots

๐Ÿ“– Story Time: Apples and Oranges

Square roots ko fruits ki tarah samjho. โˆš2 ek Apple hai aur โˆš3 ek Orange hai. Tum 2 Apples aur 3 Apples ko add kar sakte ho (5 Apples), lekin 2 Apples aur 3 Oranges ko mix nahi kar sakte. Isliye, sirf same root wale numbers hi add ya subtract hote hain.

Square roots ko add ya subtract karte waqt, unhe "Variables" (jaise x, y) ki tarah treat karein.

Rule: Sirf Like Terms (same root wale numbers) hi add ya subtract ho sakte hain.

Example 1: Add 2โˆš2 + 5โˆš3 and โˆš2 - 3โˆš3

Solution:

Step 1: Saath mein likhein: (2โˆš2 + 5โˆš3) + (โˆš2 - 3โˆš3)

Step 2: Like terms ko group karein (โˆš2 wale ek saath, โˆš3 wale ek saath):

= (2โˆš2 + โˆš2) + (5โˆš3 - 3โˆš3)

Step 3: Solve karein (Imagine โˆš2 is x, โˆš3 is y):

= (2+1)โˆš2 + (5-3)โˆš3

= 3โˆš2 + 2โˆš3 (Answer)

Note: Hum 3โˆš2 aur 2โˆš3 ko aage add nahi kar sakte kyunki wo alag-alag hain.

โœ–๏ธโž— Multiplication & Division

Yahan rule simple hai: "Bahar wala bahar se, andar wala andar se".

Identities:

  • โˆša ร— โˆšb = โˆš(a ร— b)
  • โˆša / โˆšb = โˆš(a / b)
Example 2: Multiply 6โˆš5 by 2โˆš5

= 6 ร— 2 ร— โˆš5 ร— โˆš5

= 12 ร— 5 (Kyunki โˆš5 ร— โˆš5 = 5)

= 60

Example 3: Divide 8โˆš15 by 2โˆš3

= (8/2) ร— (โˆš15 / โˆš3)

= 4 ร— โˆš(15/3)

= 4โˆš5

๐Ÿงฉ Important Identities (Formulas)

๐Ÿ“– Story Time: The Formula Friends

Ye formulas tumhare purane dost hain (Algebraic Identities), bas naye kapde pehen kar aaye hain. (a+b)ยฒ wahi hai, bas 'a' ki jagah โˆša aa gaya hai. Daro mat, bas value put karo!

Ye formulas calculations ko fast karne ke liye hain. Ye bilkul algebraic identities (a+b)ยฒ jaise hain.

Identity Example
(โˆša + โˆšb)(โˆša - โˆšb) = a - b (โˆš5 + โˆš2)(โˆš5 - โˆš2) = 5 - 2 = 3
(a + โˆšb)(a - โˆšb) = aยฒ - b (3 + โˆš7)(3 - โˆš7) = 3ยฒ - 7 = 9 - 7 = 2
(โˆša + โˆšb)ยฒ = a + 2โˆšab + b (โˆš3 + โˆš2)ยฒ = 3 + 2โˆš6 + 2 = 5 + 2โˆš6

๐Ÿงน Rationalizing the Denominator

๐Ÿ“– Story Time: Cleaning the Floor

Denominator ghar ka farsh (floor) hai. Root ek pathar (stone) jaisa hai. Hum farsh par pathar nahi chahte. Rationalization ka matlab hai us pathar ko utha kar chhat (numerator) par rakh dena, taaki farsh saaf aur smooth ho jaye.

Maths mein hume denominator (neeche wale number) mein root pasand nahi hai. Usse hatane ke process ko Rationalization kehte hain.

Type 1: Single Term (Easy)

Q: Rationalize 1/โˆš2

Trick: Jo root neeche hai, usse upar aur neeche multiply kar do.

1/โˆš2 ร— (โˆš2/โˆš2)

= โˆš2 / (โˆš2 ร— โˆš2)

= โˆš2 / 2 (Answer)

Type 2: Binomial Term (Conjugate Method)

Agar denominator mein a + โˆšb hai, toh hum uske Conjugate a - โˆšb se multiply karte hain (Sign change kar do).

Q: Rationalize 1 / (2 + โˆš3)

Step 1: Conjugate dhundo. 2 + โˆš3 ka conjugate hai 2 - โˆš3.

Step 2: Multiply numerator and denominator by conjugate.

= [1 / (2 + โˆš3)] ร— [(2 - โˆš3) / (2 - โˆš3)]

Step 3: Solve.

Top: 1 ร— (2 - โˆš3) = 2 - โˆš3

Bottom: (2 + โˆš3)(2 - โˆš3) (Identity: aยฒ - bยฒ)

= 2ยฒ - (โˆš3)ยฒ = 4 - 3 = 1

Result: (2 - โˆš3) / 1 = 2 - โˆš3 (Answer)

โœ๏ธ Practice Questions

Solve these:

  1. Add: (3โˆš2 + 7โˆš3) and (โˆš2 - 5โˆš3)
  2. Multiply: 5โˆš11 by 3โˆš11
  3. Simplify: (5 + โˆš5)(5 - โˆš5)
  4. Rationalize: 1 / (โˆš7 - โˆš6)
Show Answers

1. 4โˆš2 + 2โˆš3 (3โˆš2+โˆš2 = 4โˆš2, 7โˆš3-5โˆš3 = 2โˆš3)

2. 165 (5ร—3=15, โˆš11ร—โˆš11=11, 15ร—11=165)

3. 20 (5ยฒ - (โˆš5)ยฒ = 25 - 5 = 20)

4. โˆš7 + โˆš6 (Multiply by โˆš7+โˆš6. Denominator becomes 7-6=1)